3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #15, Cancun, MEXICO, 26 – 30 November 2001
Tdoc N5-011135

Source:
Ericsson, Ard.Jan.Moerdijk@eln.ericsson.se
Title:
Notes on backward compatibility
Agenda Item:
9
Document for:
Discussion
Category:
other
Work Item ID:
OSA2

Doc Summary:

Specs involved:
TS 29.198, ES 120070, Parlay 3.0
1 Introduction

One major aspect of any standard is backward compatibility. In our case we have to consider backward compatibility with respect to the different APIs present. This is the topic of the rest of the contribution.

Backward compatibility in a strict sense would mean that a new version of a certain version of an API could still support entities (e.g. applications) made for the previous version(s). This would imply that for a new version of the API only extensions are allowed and there is no impact on the existing set of methods and parameters.

From an API development point of view this is a hardly desirable situation as it disallows corrections within the set of methods / parameters of a previous version. However, below we will outline that such strict interpretation of backward compatibility is not needed in for the whole scope of OSA / Parlay.

Migration of applications: backward compatibility issues regarding the Service APIs.

The most general case is an application that is initiated from the network. Let’s take call control as an example. Suppose the application uses the multi-party call control (MPCC) API of Rel.4. Suppose that the MPCC of Rel.5 is changed in such a way that there is impact on the application. What are the necessary actions needed to migrate the application from the Rel. 4 API to the Rel. 5 API ? First of all, the application code needs to be adjusted so that it implements the application side of the new Rel. 5 API. Next, the application code needs to be adjusted so that it selects the Rel. 5 API implementation in the OSA / Parlay Framework. The way to select a different version is by means of the Service Properties, where there is a property for version.

This is all that is needed on code level, the business logic (e.g. user related data) will stay untouched.

The next step, which is probably more costly, is to deploy the new application instance and migrate the triggers / notifications in the SCSs. For a smooth migration, the old and new application instance will run in parallel and now the new version has to subscribe for the existing triggers by using the createNotification on the new Rel. 5 SCS, while after this has completed successfully, the old version unsubscribes by invoking destroyNotification on the old Rel. 4 SCS. In case more elaborate mechanisms for registering the application to the SCS, like proposed in S2-010157 of last SA2 VHE/OSA adhoc meeting in Kobe, where the application just informs the SCS that it is ready to receive invocation, exist, migration is even more simpler from application point of view. However, note that these steps are needed even if the new version of the API is exactly backward compatible with the previous version.

Backward compatibility issues regarding the (infrastructure) APIs of the Framework.

One main point here is that the operator must be able to retain his spendings on infrastructure. Very essential is thus that it should be possible for an operator that has a certain version of the Framework up and running, say a Parlay 3.0 / OSA Rel.4 Framework, to e.g. register future Services / SCFs or new releases of the Services / SCFs. The opposite is true as well: it should be an easy step to add already existing SCSs to a new version of the Framework.

What are then the implications on the FW / SCSs ? Let’s first start with the case where a new release (say Rel.5) SCS needs to be added to the Rel.4 Framework. To make sure that this would work the SCS is required to support previous versions of the infrastructure APIs (e.g. IpRegistration, IpServiceLifeCycleManager, IpFaultManager). Thus in this case it would be really helpful if these APIs are true back-ward compatible. However, it is not impossible to support implementations of different versions of the infrastructure APIs in an SCS.

By the way: this issue on infrastructure APIs is the same whether considering an SCS or an application.

The other case, where an SCS or application needs to be hooked up to a Framework of a newer release, has other implications. The application / SCS uses the obtainInterface() method on IpAccess to obtain the reference to the infrastructure APIs. However, there is currently no means to supply a release version in the obtainInterface() method, hence the Framework can only supply a certain (the most up-to-date) version of the APIs. In case there are differences between the API versions, there would be a problem. We should therefore go either for strict backward compatibility here or allow a release differentiator to be supplied in the obtainInterface().

Conclusions

From the previous discussion it is clear that without too much hassle the application can migrate to a new version of a Service / non-framework API, even if the new version is not completely back-ward compatible. Thus, strict backward compatibility is not completely necessary for Service APIs. Regarding changes in the Service APIs themselves we have and should always be very careful when introducing changes that go beyond adding new methods, but it is not insurmountable. In case we need to introduce changes, this should be clearly indicated in the specifications, so that developers can easily see what has been changed. A sort of deprecated mechanism like Java has it would thus be useful.

Furthermore, we found that back-ward compatibility is especially an issue for the Framework (infrastructure) APIs. In case we want to allow updates in the APIs, and we have the case of an older version of an SCS / application to communicate with the Framework, support for obtaining previous versions of the FW APIs should be added. An alternative is to change the name of the new API version so that it can be obtained without explicitly requesting a version.

For all cases regarding the FW APIs the best solution would be to always be strictly back-ward compatible. In case it is really necessary to update the APIs, a different name should be used.

API version X

API version X+1

�PAGE \# "'PAGE: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

